题意:有n个点m条边的单向无环图。每条边有一个水流的上界和下界,水流要大于等于下界小于等于上界,问能否满足这些边的约束条件,如果能输出Yes,并输出每条边的水流,否则输出No

du[i]du[i]为节点ii的流入下界之和-流出下界之和
然后若e(u,v,down,up)e(u,v,down,up)属于原图,那么新的图中的边为e(u,v,0,updown)e(u,v,0,up-down)
新增超级源点sstsst和超级汇点eeteet

du[i]>0du[i]>0,建边e(sst,i,0,du[i])e(sst,i,0,du[i])
因为du[i]>0du[i]>0的时候,代表这个点的入流下界之和大于出流下界之和,导致新图流量不平衡,所以要增加这个点的出流,所以建边e(sst,i,0,du[i])e(sst,i,0,du[i])

.

du[i]<0du[i]<0,建边e(i,eet,0,du[i])e(i,eet,0,-du[i])
因为du[i]<0du[i]<0的时候,代表这个点的入流下界之和小于出流下界之和,导致新图流量不平衡,所以要增加这个点的入流,所以建边e(i,eet,0,du[i])e(i,eet,0,-du[i])

然后以sstssteeteet跑最大流,若最大流!=所有du[i]>0之和,那么代表无解,否则代表有解,输出对应边的反边加上初始流就是答案了。

//author: CHC
//First Edit Time: 2015-09-05 16:15
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <set>
#include <vector>
#include <map>
#include <queue>
#include <set>
#include <algorithm>
#include <limits>
using namespace std;
typedef long long LL;
const int MAXN=300;
const int MAXM=1e+5;
const int INF = numeric_limits<int>::max();
const LL LL_INF= numeric_limits<LL>::max();
struct Edge
{
int from,to,ci,next;
Edge(){}
Edge(int _from,int _to,int _ci,int _next):from(_from),to(_to),ci(_ci),next(_next){}
}e[MAXM];
int head[MAXN],tot;
int dis[MAXN];
int top,sta[MAXN],cur[MAXN];
inline void init(){
memset(head,-1,sizeof(head));
tot=0;
}
inline void AddEdge(int u,int v,int ci0,int ci1=0){
e[tot]=Edge(u,v,ci0,head[u]);
head[u]=tot++;
e[tot]=Edge(v,u,ci1,head[v]);
head[v]=tot++;
}
inline bool bfs(int st,int et){
memset(dis,0,sizeof(dis));
dis[st]=1;
queue <int> q;
q.push(st);
while(!q.empty()){
int now=q.front();
q.pop();
for(int i=head[now];i!=-1;i=e[i].next){
int next=e[i].to;
if(e[i].ci&&!dis[next]){
dis[next]=dis[now]+1;
if(next==et)return true;
q.push(next);
}
}
}
return false;
}
LL Dinic(int st,int et){
LL ans=0;
while(bfs(st,et)){
//printf("here\n");
top=0;
memcpy(cur,head,sizeof(head));
int u=st,i;
while(1){
if(u==et){
int pos,minn=INF;
//printf("top:%d\n",top);
for(i=0;i<top;i++)
{
if(minn>e[sta[i]].ci){
minn=e[sta[i]].ci;
pos=i;
}
//printf("%d --> %d\n",e[sta[i]].from,e[sta[i]].to);
}
for(i=0;i<top;i++){
e[sta[i]].ci-=minn;
e[sta[i]^1].ci+=minn;
}
top=pos;
u=e[sta[top]].from;
ans+=minn;
//printf("minn:%d\n\n",minn);
}
for(i=cur[u];i!=-1;cur[u]=i=e[i].next)
if(e[i].ci&&dis[u]+1==dis[e[i].to])break;
if(cur[u]!=-1){
sta[top++]=cur[u];
u=e[cur[u]].to;
}
else {
if(top==0)break;
dis[u]=0;
u=e[sta[--top]].from;
}
}
}
return ans;
}
int du[MAXN],num[MAXM],n,m;
struct ped {
int u,v,l,c;
}cs[MAXM];
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
init();
memset(du,0,sizeof(du));
int st=n+1,et=n+2;
LL totx=0;
for(int i=0;i<m;i++){
scanf("%d%d%d%d",&cs[i].u,&cs[i].v,&cs[i].l,&cs[i].c);
num[i]=tot;
AddEdge(cs[i].u,cs[i].v,cs[i].c-cs[i].l);
du[cs[i].u]-=cs[i].l;
du[cs[i].v]+=cs[i].l;
}
for(int i=1;i<=n;i++){
if(du[i]>0)AddEdge(st,i,du[i]),totx+=du[i];
else AddEdge(i,et,-du[i]);
}
LL flow=0;
flow=Dinic(st,et);
if(flow!=totx)puts("NO");
else {
puts("YES");
for(int i=0;i<m;i++){
printf("%d\n",e[num[i]^1].ci+cs[i].l);
}
}
}
return 0;
}